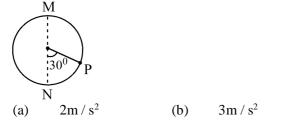


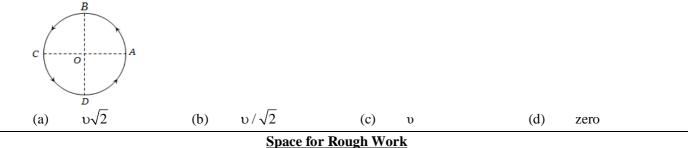
Max Marks: 100

Date: 06.11.2022


ARJUNA BATCH PHYSICS : REVISION TEST – 1 (SET B) Topic: Ray Optics + Circular Motion + Gravitation

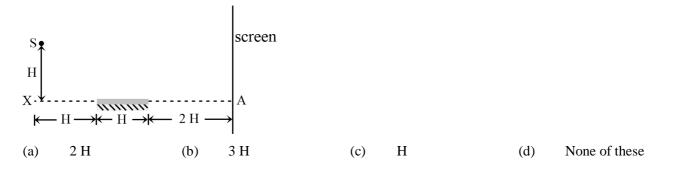
2. A car moves on a straight road with uniform speed. Normal reaction at A, B and C are N_A , N_B and N_C respectively. Then:

3. A ball of mass 1/2 kg is moved in a vertical circle. When ball is at P, then calculate its tangential acceleration [take, $g = 10 \text{ m/s}^2$]

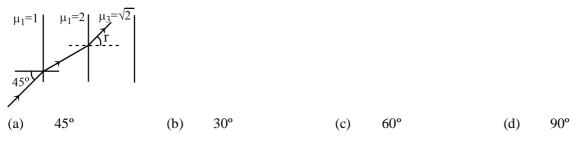

4. Figure shows a body of mass m moving with a uniform speed v along a circle of radius r. The change in velocity in going from A to B is

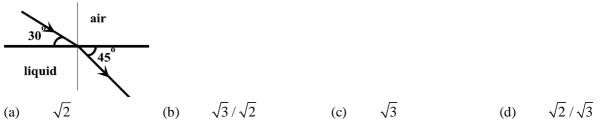
(c)

 $5m/s^2$

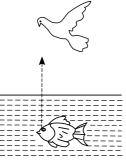

(d)

 $1 m / s^2$

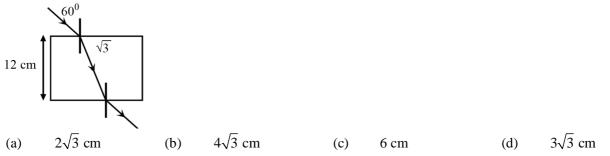


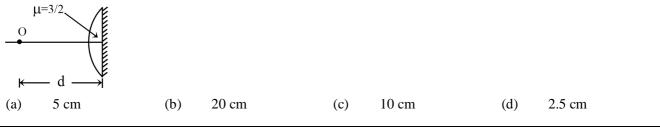

5. A point source has been placed as shown in the figure. What is the length on the screen that will receive reflected light from the mirror?

- 6. A ray of light is incident at an angle of 60° with the normal to a cm, thick plate ($\mu = \sqrt{3}$). The shift in the path of the ray as it emerges out from the plate is
 - (a) 1 cm (b) 1.2 cm (c) 0.5 cm (d) 1.8 cm
- 7. In the figure shown is equal to $\angle r$ is equal to



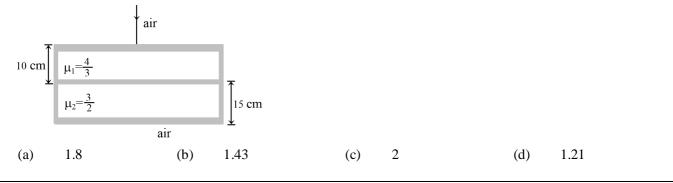
8. Figure shows the path of a ray of light from air into a liquid. The index of refraction of the liquid with respect to air is




9. A fish is vertically below a flying bird moving vertically down towards water surface. The bird will appear to the fish to be

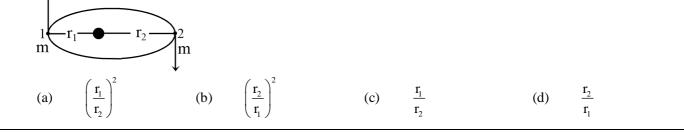
- (a) moving faster than its speed and also away from the real distance
- (b) moving faster than its real speed and never than its real distance.
- (c) moving slower than its real speed and also nearer than its real distance
- (d) moving slower than its real speed and away from the real distance
- 10. A glass slab has width 12 cm. The refractive index of glass is $\sqrt{3}$. A ray of monochromatic light is incident on one face at an angle of 60° as shown in the figure. The lateral displacement the ray suffers in passing through the slab is:

11. A plano-convex lens of focal length 10 cm is silvered at its plane face. The distance d at which an object must be placed in order to get its image on itself is:



- 12. In an isosceles prism of prism angle 45°, it is found that when the angle of incidence is same as the prism angle, the emergent ray grazes the emergent surface. Find the refractive index of the material of the prism. For what angle of incidence the angle of deviation will be minimum?
 - (a) 1 (b) $\sqrt{3},41.51^{\circ}$ (c) 2 (d) 3
- 13. A ray is incident on a glass sphere as shown in the figure. The opposite surface of the sphere is partially silvered. If the net deviation of the ray transmitted at the partially silvered surface is 1/3 rd of the net deviation suffered by the ray reflected at the partially silvered surface (after emerging out of the sphere). Find the refractive index of the sphere.

- 14. The height to which water must be filled into a vessel of height 21 cm such that it appears half-filled when viewed from above is ($\mu = 4/3$)
 - (a) 8 cm (b) 10.5 cm (c) 12 cm (d) 14 cm
- 15. Considering normal incidence of ray, the equivalent refractive index of combination of two slabs shown in the figure is

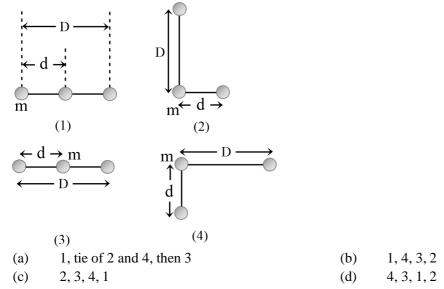


16. Mass M is uniformly distributed only on the curved surface of a thin hemispherical shell. A, B and C are three points on the circular base of the hemisphere, such that A is the centre. Let the gravitational potential at points A, B and C be V_A, V_B, V_C respectively. Then

$$A \bullet B \bullet C \bullet$$
(a) $V_A > V_B > V_C$
(b) $V_C > V_B > V_A$
(c) $V_B > V_A$ and $V_B > V_C$
(d) $V_A = V_B = V_C$

- 17. Three particles of equal mass m are situated at the vertices of an equilateral triangle of side l. The work done in increasing the side of the triangle to 2l will be:
 - (a) $\frac{3G^2m}{2l}$ (b) $\frac{Gm^2}{2l}$ (c) $-\frac{3Gm^2}{2l}$ (d) $\frac{3Gm^2}{l}$
- 18. The real velocity and the angular momentum of the planet are related by which of the following relations? (where m_p is the mass of the planet)
 - (a) $\frac{\Delta \vec{A}}{\Delta t} = \frac{\vec{L}}{2m_p}$ (b) $\frac{\Delta \vec{A}}{\Delta t} = \frac{\vec{L}}{m_p}$ (c) $\frac{\Delta \vec{A}}{\Delta t} = \frac{2\vec{L}}{m_p}$ (d) $\frac{\Delta \vec{A}}{\Delta t} = \frac{\vec{L}}{\sqrt{2m_p}}$
- 19. Two planets revolve with same angular velocity about a star. The radius of orbit of the outer planet is twice the radius of orbit of the inner planet. If T is the time period of the revolution of the outer planet, find the time in which the inner planet will fall into the star, if it was suddenly stopped.
 - (a) $\frac{T\sqrt{2}}{8}$ (b) $\frac{T\sqrt{2}}{16}$ (c) $\frac{T\sqrt{2}}{4}$ (d) $\frac{T\sqrt{2}}{32}$
- 20. The ratio of KE of the planet at points 1 and 2 is:

21. The figure shows a hemispherical shell having uniform mass density. The direction of gravitational field intensity at point P will be along


- 22. Two equal masses separated by a distance (d) attract each other with a force (F). If one unit of mass is transferred from one of them to the other, the force
 - (a) Does not change
 - (b) Decreases by (G/d^2)
 - (c) Becomes Two equal masses separated by a distance (d) attract each other with a force (F). If one unit of mass is transferred from one of them to the other, (G/d^2) times
 - (d) Increases by $(2G/d^2)$
- 23. Three masses, each equal to M, are placed at the three corners of a square of side a. The force of attraction on unit mass at the fourth corner will be
 - (a) $\frac{GM}{3a^2}$ (b) $\frac{GM}{a^2}\sqrt{3}$ (c) $\frac{3GM}{a^2}$ (d) $\frac{GM}{a^2}\left[\frac{1}{2}+\sqrt{2}\right]$
- 24. Four particles of masses m, 2m, 3m and 4m are kept in sequence at the corners of a square of side a. The magnitude of gravitational force acting on a particle of mass m placed at the centre of the square will be

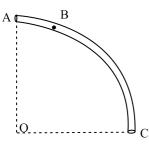
(a)
$$\frac{24m^2G}{a^2}$$
 (b) $\frac{6m^2G}{a^2}$ (c) $\frac{4\sqrt{2}m^2G}{a^2}$ (d) Zero

25. The figure shows four arrangements of three particles of equal masses. Rank the arrangement according to the magnitude of the gravitational force on the particle m, greatest first.

26. The planet mercury is revolving in an elliptical orbit around the sun, as shown. The kinetic energy of mercury at point P is denoted by K_p. Then:

- 27. A body is imparted a velocity v from the surface of the earth. If v_0 is orbital velocity and v_e is the escape velocity then for
 - (A) $v = v_0$ the body follows a circular track around the earth.
 - (B) $v = v_0$ but $< v_e$, the body follows elliptical path around the earth
 - (C) $\upsilon < \upsilon_0$ the body follows elliptical path and returns to surface of earth
 - (D) $\upsilon > \upsilon_e$, the body follows hyperbolic path and escapes the gravitational pull of the earth

(a)	A, B	(b)	B, C	(c)	A, B, C	(d)	A, B, C, D


- 28. If v_e is escape velocity and v_0 , is orbital velocity of the satellite for orbit close to the Earth's surface, then these are related by
 - (a) $\upsilon_0 = \sqrt{2}\upsilon_e$ (b) $\upsilon_0 = \upsilon_e$ (c) $\upsilon_e = \sqrt{2}\upsilon_0$ (d) $\upsilon_e = \sqrt{2}\upsilon_0$
- 29. A body falls freely towards the earth from a height 2R above the surface of the earth, where initially it was at rest.If R is the radius of the earth, then its velocity on reaching the surface of the earth is

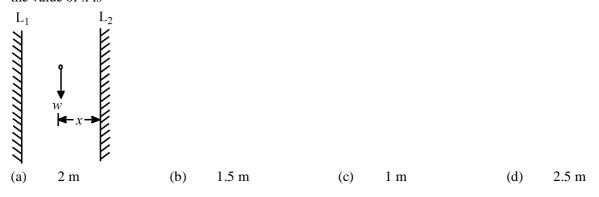
(a)
$$\sqrt{\frac{4}{3}gR}$$
 (b) $\sqrt{\frac{2}{3}gR}$ (c) $\frac{4}{3}\sqrt{gR}$ (d) $2\sqrt{gR}$

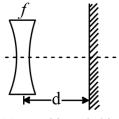
30. A particle of mass m is thrown upwards from the surface of the earth, with a velocity u. The mass and the radius of the earth are, respectively, M and R. G is gravitational constant and g is acceleration due to gravity on the surface of the earth. The minimum value of u so that the particle does not return back to earth is

(a)
$$\sqrt{\frac{2GM}{R}}$$
 (b) $\sqrt{\frac{2GM}{R^2}}$ (c) $\sqrt{2gR^2}$ (d) $\sqrt{\frac{4GM}{R^2}}$

31. The tube AC forms a quarter circle in a vertical plane. The ball B has an area of cross-section slightly smaller than that of the tube, and can move without friction through it. B is placed at A and displaced slightly. It will

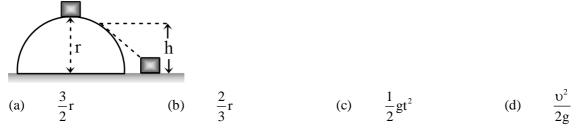
- (a) Always be in contact with the inner wall of the tube
- (b) Always be in contact with the outer wall of the tube
- (c) Initially be in contact with the inner wall and later with the outer wall
- (d) Initially be in contact with outer wall and later with the inner wall


32. Ball A of mass m, after sliding from an inclined plane, strikes elastically another ball B of the same mass at rest. Find the minimum height h so that ball B just completes the circular motion of the surface at C. All surfaces are smooth.

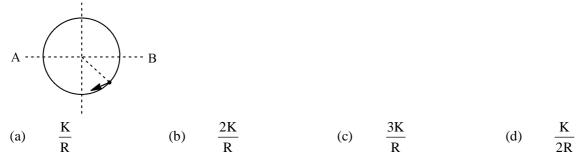

- 33. The maximum velocity at the lowest point, so that the string just slack at the highest point in a vertical circle of radius '*l*'.
 - (a) \sqrt{gl} (b) $3\sqrt{gl}$ (c) $\sqrt{5gl}$ (d) $\sqrt{7gl}$
- 34. A body of mass m hangs at one end of a string of length l, the other end of which is fixed. It is given a horizontal velocity so that the string would just reach where it makes an angle of 60° with the vertical. The tension in the string at mean position is:
 - (a) 2 mg (b) mg (c) 3 mg (d) $\sqrt{3} \text{mg}$
- 35. A fighter plane is moving in a vertical circle of radius 'r'. Its minimum velocity at the highest point of the circle will be
 - (a) $\sqrt{3gr}$ (b) $\sqrt{2gr}$ (c) \sqrt{gr} (d) $\sqrt{gr/2}$
- 36. Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror is parallel to the second and light reflected from the second mirror is parallel to the first mirror. Determine the angle between the two mirrors.
 - (a) 60° (b) 30° (c) 90° (d) 180°

37. Two plane mirrors L_1 and L_2 are parallel to each other and 3 m part. A person standing x m from the right mirror L_2 looks into this mirror and sees a series of images. The distance between the first and second image is 4 m. Then the value of x is

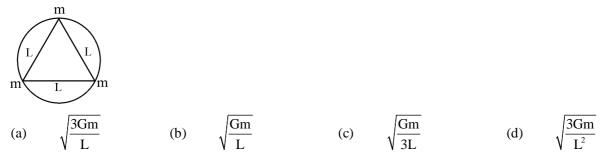
- 38. A luminous point object is moving along the principal axis of a concave mirror of focal length 12 cm towards it. When its distance from the mirror is 20 cm its velocity is 4 cm/s. The velocity of the image in cm/s at that instant is:
 - (a) 6, towards the mirror (b) 6, away from the mirror
 - (c) 9, away from the mirror (d) 9, towards the mirror
- 39. A lens of focal length 20.0 cm and aperture radius 2.0 cm is placed at a distance 30.0 cm from a point source of light. On the other side a screen is placed at a distance 50.0 cm from the lens. The radius of spot of light formed on screen is. (Neglect spherical aberration through lens):
 - (a) 0.5 cm (b) 0.3 cm (c) 0.2 cm (d) 1.0 cm
- 40. A lens of focal length 20.0 cm and aperture radius 2.0 cm is placed at a distance 30.0 cm from a point source of light. On the other side a screen is placed at a distance 50.0 cm from the lens. The radius of spot of light formed on screen is. (Neglect spherical aberration through lens):

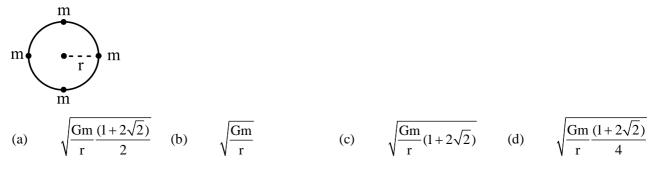

(a)	20 cm behind the mirror	(b)	7.5 cm in front of the mirror
(c)	7.5 cm behind the mirror	(d)	2.5 cm in front of the mirror

- Learning with the Speed of Mumbai and the Tradition of Kota
- 41. A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed u. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is
 - (a) $\sqrt{u^2 2gL}$ (b) $\sqrt{2gL}$ (c) $\sqrt{u^2 gL}$ (d) $\sqrt{2(u^2 gL)}$
- 42. The figure shows a smooth vertical circular track AB of radius R. A block slides along the surface AB when it is given a velocity equal to $\sqrt{6gR}$ at point A. The ratio of the force exerted by the track on the block at point A to that at point B is


(a)
$$0.25$$
 (b) 0.35 (c) 0.45 (d) 0.55

- 43. A body is revolving in a vertical circle with constant mechanical energy. The speed of the body at the highest point is $\sqrt{2rg}$. The speed of the body at the lowest point is
 - (a) $\sqrt{7 \text{gr}}$ (b) $\sqrt{6 \text{gr}}$ (c) $\sqrt{8 \text{gr}}$ (d) $\sqrt{9 \text{gr}}$
- 44. A small body of mass m slides down from the top of a hemisphere of radius r. The surface of the block and hemisphere are frictionless. The height at which the body loses contact with the surface of the sphere is




45. A particle of mass 'm' oscillates along the horizontal diameter AB inside a smooth spherical shell of radius R. At any instant K.E. of the particle is K. Then force applied by particle on the shell at this instant is :

46. Three identical particles each of mass m are at the vertices of an equilateral triangle of side L. If they are to preserve their original configuration of an equilateral triangle, the speed with which they must revolve under the influence of one another's gravity in a circular orbit circumscribing the triangle is:

47. Four masses of m each are orbiting in a circle of radius r in the same direction under gravitational force. The velocity of each particle is:

- Learning with the Speed of Mumbai and the Tradition of Kota
- 48. The dimensional formula for gravitational constant is
 - (a) $[M^{-1}L^{3}T^{-2}]$ (b) $[M^{3}L^{-1}T^{-2}]$ (c) $[M^{-1}L^{2}T^{3}]$ (d) $[M^{2}L^{3}T^{-1}]$
- 49. The force between two objects of equal masses is F. If 20% mass of one object is transferred to the other object, then the new force will be :
 - (a) $\frac{97}{100}$ F (b) $\frac{25}{24}$ F (c) $\frac{24}{25}$ F (d) $\frac{100}{96}$ F
- 50. The mass of the earth is 6.00×10^{24} Kg and that of the moon is 7.40×10^{22} kg. The constant of gravitation G = 6.67×10^{-11} N $-m^2/kg^2$. The potential energy of the system is -7.79×10^{28} joules. The mean distance between the earth and moon is
 - (a) 3.80×10^8 metres (b) 3.37×10^6 metres (c) 7.60×10^4 metres (d) 1.90×10^2 metres

ARJUNA BATCH CHEMISTRY : REVISION TEST-1 (SET B) Topic: Mole Concept + Redox Reaction + Periodic Properties + S Block + Hydrogen

51.	Element with atomic number [Z=111] is named in the honour of							
	(a)	Hassium	(b)	Sea Borgium	(c)	Meitnerium	(d)	Rontgenium
52.	The r	number of neutrons i	in a drop	of water (20 drops=	1 mL) a	t 4°C		
	(a)	6.023×10^{22}	(b)	1.338×10^{22}	(c)	6.023×10^{20}	(d)	7.338×10^{22}
53.	The n	number of significan	t figures	in 6.0023 are				
	(a)	5	(b)	4	(c)	3	(d)	1
54.	Whic	h of the following s	equence	regarding the first ion	nization	potential of coinage	metal is	correct?
	(a)	Cu > Ag > Au	(b)	Cu < Ag < Au	(c)	Cu > Ag < Au	(d)	Ag > Cu < Au
55.	MnO	$^{-}_4 + \mathrm{SO}_3^{-2} + \mathrm{H}^+ \longrightarrow \mathrm{N}_3$	$Mn^{+2} + S$	O_4^{-2} . The number of 1	H ⁺ ions	involved is		
	(a)	2	(b)	6	(c)	8	(d)	16
56.	How	many ml of 1 (M) H	I2SO4 is	required to neutralise	e 10 ml c	of 1 (M) NaOH soluti	on?	
	(a)	2.5	(b)	5.0	(c)	10.0	(d)	20.0
57.	Oxida	ation number of Cl i	n NOCl	O ₄ is				
	(a)	+7	(b)	-7	(c)	+5	(d)	-5
58.	Two	oxides of a metal co	ontain 5	0% and 40% metal N	A respec	tively. If the formula	a of the f	first oxide is MO ₂ , the
	form	ala of the second ox						
	(a)	MO_2	(b)	MO_3	(c)	M_2O	(d)	M_2O_5
59.	The a	amount of energy re	eleased v	when 10 ⁶ atoms of ic	dine in	vapour state are con	verted to	to ions is 4.9×10^{-13} J.
	What	is the electron affin	ity of io	dine in eV/atom?				
	(a)	2.0	(b)	2.5	(c)	3.06	(d)	2.75

60.	Cryst	als of which pair are	e isomor	phous				
	(a)	ZnSO ₄ , SnSO ₄	(b)	MgSO ₄ , CaSO ₄	(c)	ZnSO ₄ , MgSO ₄	(d)	PbSO ₄ , NiSO ₄
61.	Diago	onal relationship is s	hown by	7				
	(a)	B - S	(b)	Li - Mg	(c)	Mg - Ca	(d)	S - Se
62.	0.56 g	gm of gas occupies 2	280 cm ³	at NTP, then its mole	cular ma	ass is		
	(a)	4.8	(b)	44.8	(c)	2	(d)	22.4
63.	Total	number of groups in	n Mende	leef's table				
	(a)	18	(b)	9	(c)	7	(d)	10
64.	1.25 §	g of a solid dibasic a	acid is co	ompletely neutralised	by 25 n	nl of 0.25 molar Ba(C))2 sol	ution. Molecular mass
	of the	acid is						
	(a)	100	(b)	150	(c)	120	(d)	200
65.	The f	ollowing data are av	ailable.					
	(i)	% of Mg in Mgo	and in N	IgCl ₂	(ii)	% of C in CO & C	O_2	
	(iii)	% of Cr in K ₂ Cr ₂	O7 and F	K_2CrO_4	(iv)	% of Cu isotopes in	n Cu me	tal
	The la	aw of multiple prop	ortions n	nay be illustrated by c	lata.			
	(a)	i & ii	(b)	only ii	(c)	i, ii & iii	(d)	only iii
66.	In the	reaction,						
	HAsC	$D_2 + Sn^{2+} \rightarrow As + Sn^{2+}$	$h^{4+} + H_2 G$	O oxidizing agent is				
	(a)	Sn ²⁺	(b)	Sn^{4+}	(c)	As	(d)	HAsO ₂
67.	The f	irst and second ionia	sation er	thalpies of a metal a	re 496 a	nd 4560 kJ mol ⁻¹ , res	pectivel	y. Hoe many moles of
	HCl a	nd H ₂ SO ₄ , respectiv	vely, wil	be needed to react co	ompletel	y with 1 mole of the	metal hy	vdroxide?
	(a)	1 and 0.5	(b)	2 and 0.5	(c)	1 and 1	(d)	1 and 2
68.	Whick	h of the following io	ons has t	he smallest radius ?				
	(a)	Be ²⁺	(b)	Li^+	(c)	O ²⁻	(d)	F^-

69.		standard reduction I ode potentials of Cu			u ²⁺ /Cu ⁺	are 0.337 and 0.153	V respe	ectively. The standard
	(a)	0.521 V	(b)	0.184 V	(c)	0.490 V	(d)	0.827 V
70.	2.76 §	g of silver carbonate	on bein	g strongly heated yie	ld a resid	lue weighing:		
	(a)	2.64 g	(b)	2.48 g	(c)	2.16 g	(d)	2.32 g
71.	The s	table oxidation state	of Tha	llium, a IIIA group el	ement is			
	(a)	+1	(b)	+3	(c)	-3	(d)	+5
72.	The a	cidic, basic and amp	ohoteric	oxides, respectively,	are:			
	(a)	MgO, Cl ₂ O, Al ₂ O) ₃		(b)	Cl_2O , CaO , P_4O_{10}		
	(c)	Na ₂ O, SO ₃ , Al ₂ O	3		(d)	N ₂ O ₃ , Li ₂ O, Al ₂ O ₃		
73.	Rearr	ange the following	(I to IV) in the order of incr	easing n	nasses and choose the	e correct	answer from (1), (2),
	(3) an	d (4) (Atomic mass	: N = 14	, O = 16, Cu = 63).				
	I.	1 molecule of ox	te on being strongly heated yield (b) 2.48 g te of Thallium, a IIIA group elem (b) +3 nphoteric oxides, respectively, ard O ₃ O ₃ (I to IV) in the order of increase as: N = 14, O = 16, Cu = 63). xygen cular weight of oxygen (b) IV < III < II < I 42Cr ₂ O ₇ on reaction with excess K (b) 1 omplete reaction of 27 g of Alum (b) 44.8 sodium oxide in 620 g of it is	II.	1 atom of nitrogen			
	III.	1×10^{-10} g molec	ular we	ight of oxygen	IV.	1×10^{-10} g atomic	weight o	of copper
	(a)	II < I < III < IV	(b)	$\mathrm{IV} < \mathrm{III} < \mathrm{II} < \mathrm{I}$	(c)	II < III < I < IV	(d)	III < IV < I < II
74.	One r	nole of acidified K ₂	Cr ₂ O ₇ 01	n reaction with excess	s KI will	liberatemole (s) of	I ₂	
	(a)	6	(b)	1	(c)	7	(d)	3
75.	H ₂ ev	olved at STP on cor	nplete re	eaction of 27 g of Alu	minium	with excess of aqueo	us NaO	H would be
	(a)	22.4	(b)	44.8	(c)	67.2	(d)	33.6 litres
76.	The n	umber of moles of s	odium o	oxide in 620 g of it is				
	(a)	1 mol	(b)	10 moles	(c)	18 moles	(d)	100 moles
77.	The u	ltimate products of	oxidatio	n of most of hydroge	n and ca	rbon in food stuffs are	e	
	(a)	H ₂ O ₂ and CO			(b)	CH ₃ OH and CH ₃ C	OOH	
	(c)	H ₂ O and CO ₂			(d)	H ₂ and C		

78.	Give	the name of the iner	gas ato	om in which the total	number	of d-electrons is equa	al to the	difference in numbers	
	of tot	al p and s-electrons							
	(a)	Не	(b)	Ne	(c)	Ar	(d)	Kr	
79.	How	many electrons and j	protons	are present in the bala	anced ha	If reaction $NO_2^- \rightarrow N$	Ю		
	(a)	1,2	(b)	1,1	(c)	2, 2	(d)	0, 1	
80.	An at	om of element has 2	K, 8L a	nd 3M electrons. The	n that ele	ement is placed in			
	(a)	I A group	(b)	II A group	(c)	III A group	(d)	IV A group	
81.	The p	air of compounds wl	nich car	nnot exist together in s	solution	is:			
	(a)	NaHCO ₃ and NaC	θH		(b)	Na ₂ CO ₃ and NaHCO ₃			
(c) Na_2CO_3 and $NaOH$ (d)					(d)	NaHCO ₃ and NaCl			
82.	Moist	t hydrogen cannot be	dried o	ver concentrated H ₂ S	O4 beca	use:			
	(a)	it can catch fire			(b)	it is reduced by H ₂	SO_4		
	(c) a part of it is oxidized by H_2SO_4				(d)	it decomposes H ₂ S	O_4		
83.	The r	nost dangerous meth	od of pr	eparing hydrogen wo	uld be b	y the action of HCl a	nd		
	(a)	Zn	(b)	Fe	(c)	К	(d)	Al	
84.	Hydro	ogen gas is not libera	ited whe	en the following meta	ls added	to dil. HCl:			
	(a)	Mg	(b)	Sn	(c)	Ag	(d)	Zn	
85.	Hydro	ogen after losing one	electro	n forms H ⁺ resembles	in this j	property with:			
	(a)	alkali metals			(b)	halogens			
	(c)	alkaline earths me	etals		(d)	transitional elemen	ts		
86.	Heav	y water reacts with A	d_4C_3 to	form:					
	(a)	CD ₄ and Al(OH) ₃	(b)	CH ₄ and Al(OD) ₃	(c)	CD ₄ and Al(OD) ₃	(d)	None of these	
87.	Amo	ng the following, wh	ich has	minimum solubility ir	n water?				
	(a)	КОН	(b)	CsOH	(c)	LiOH	(d)	RbOH	

88.	In wh	nich of the follow	ing reaction	n, H2O2 is acting as a	reducing	g agent?				
	(a)	$SO_2 + H_2O_2 -$	\longrightarrow H	2 SO 4	(b)	$2KI + H_2O_2$ –	→ 2K0	$OH + I_2$		
	(c)	$Ag_2O + H_2O_2$	> 2	$2Ag + H_2O + O_2$	(d)	$PbS + 4H_2O_2 \longrightarrow PbSO_4 + 4H_2O$				
89.	Whic	h can adsorb larg	e volumes	of hydrogen gas?						
	(a)	Colloidal solu	tion of pall	adium	(b)	Finely divided	d nickel			
	(c)	Colloidal ferri	c hydroxid	e	(d)	Finely divided	d platinum			
90.	Maxi	mum concentratio	on of ortho	-H2 in ordinary hydro	ogen is:					
	(a)	75% ortho- H_2	+ 25% par	a-H ₂	(b)	25% ortho-H ₂	2 + 75% para-	H_2		
	(c)	50% ortho-H ₂	+ 50% par	a-H ₂	(d)	99% para-H ₂	+ 1% ortho-H	I ₂		
91.	The h	ydrogen at the m	oment of it	ts formation is called	:					
	(a)	atomic	(b)	ortho	(c)	para	(d)	nascent		
92.	Sodiu	ım forms Na ⁺ and	l not Na ²⁺ b	because:						
	(a)	sodium contai	ns only one	e electron in outermo	st shell					
	(b)	first ionization	n potential i	is small and the differ	rence in t	first and second i	ionization po	tentials is large		
	(c)	radius of Na ²⁺	is much sn	naller than of Na ⁺						
	(d)	None of these								
93.	Most	reactive meal am	ong the fol	llowing is:						
	(a)	K	(b)	Li	(c)	Na	(d)	Mg		
94.	Acidi	fied solution of c	hromic aci	d on treatment with H	H ₂ O ₂ yiel	ds:				
	(a)	$CrO_3 + H_2O +$	O_2		(b)	$Cr_2O_2 + H_2O$	$+ O_2$			
	(c)	$CrO_5 + H_2O +$	K_2SO_4		(d)	$H_2Cr_2O_7 + H_2$	$O + O_2$			
95.	Whic	h is more basic ir	n character	?						
	(a)	RbOH	(b)	КОН	(c)	LiOH	(d)	NaOH		

96.	Which	n of the following co	ompound	ds on reaction with Na	aOH and	l H ₂ O ₂ gives yellow c	olour?	
	(a)	Zn(OH) ₂	(b)	Cr(OH) ₃	(c)	Al(OH) ₃	(d)	None of these
97.	Which	n alkaline earth meta	al does n	not impact the flame c	olour?			
	(a)	Sr	(b)	Be	(c)	Ra	(d)	Ca
98.	Which is used to remove N_2 from air?							
	(a)	Mg	(b)	Р	(c)	H_2SO_4	(d)	CaCl ₂
99.								
	(a)	Na ₂ O	(b)	Na ₂ O ₂	(c)	NaO ₂	(d)	Na ₃ N
100.	Which	n metal does not for	m ionic	hydride?				
	(a)	Ba	(b)	Mg	(c)	Ca	(d)	Sr

Max Marks: 100

ARJUNA BATCH PHYSICS : REVISION TEST – 1 (SET B) ANSWER KEY Topic: Ray Optics + Circular Motion + Gravitation

1		2		2	(a)	4	(a)	5	(a)
1.	(d)	2.	(d)	3.	(c)	4.	(a)	5.	(a)
6.	(a)	7.	(b)	8.	(b)	9.	(a)	10.	(b)
11.	(c)	12.	(b)	13.	(a)	14.	(d)	15.	(b)
16.	(d)	17.	(c)	18.	(a)	19.	(a)	20.	(b)
21.	(c)	22.	(b)	23.	(d)	24.	(c)	25.	(a)
26.	(c)	27.	(d)	28.	(c)	29.	(a)	30.	(a)
31.	(c)	32.	(a)	33.	(c)	34.	(a)	35.	(c)
36.	(a)	37.	(c)	38.	(c)	39.	(b)	40.	(d)
41.	(d)	42.	(d)	43.	(b)	44.	(b)	45.	(c)
46.	(b)	47.	(d)	48.	(a)	49.	(c)	50.	(a)

CHEMISTRY : REVISION TEST-1 (SET B) ANSWER KEY Topic: Mole Concept + Redox Reaction + Periodic Properties + S Block + Hydrogen

51.	(d)	52.	(b)	53.	(a)	54.	(c)	55.	(b)
56.	(b)	57.	(a)	58.	(b)	59.	(c)	60.	(c)
61.	(b)	62.	(b)	63.	(b)	64.	(d)	65.	(b)
66.	(d)	67.	(a)	68.	(a)	69.	(a)	70.	(c)
71.	(a)	72.	(d)	73.	(a)	74.	(d)	75.	(d)
76.	(b)	77.	(c)	78.	(d)	79.	(a)	80.	(c)
81.	(a)	82.	(c)	83.	(c)	84.	(c)	85.	(a)
86.	(c)	87.	(c)	88.	(c)	89.	(a)	90.	(a)
91.	(d)	92.	(b)	93.	(a)	94.	(c)	95.	(a)
96.	(b)	97.	(b)	98.	(a)	99.	(b)	100.	(b)